149 research outputs found

    Investigation of frontal lobe activation with fNIRS and systemic changes during video gaming.

    Get PDF
    Frontal lobe activation caused by tasks such as videogames can be investigated using multichannel near-infrared spectroscopy (fNIRS), sometimes called optical topography. The aims of this study are to investigate the effects of video gaming (fighting and puzzle games) in the brain and the systemic physiology and to determine whether systemic responses during the gaming task are associated with the measurement of localised cerebral haemodynamic changes as measured by fNIRS. We used a continuous-wave 8-channel fNIRS system to measure the changes in concentration of oxy-haemoglobin (HbO2) and deoxy-haemoglobin (HHb) and changes in total haemoglobin (ΔtHb = ΔHbO2 + ΔHHb) over the frontal lobe in 30 healthy volunteers. The Portapres system was used to measure mean blood pressure (MBP) and heart rate (HR), and a laser Doppler was employed to measure the changes in scalp blood flow (or flux). Even though we observed significant changes in systemic variables during gaming, in particular in scalp flow, we also managed to see localised activation patterns over the frontal polar (FP1) region. However, in some channels over the frontal lobe, we also observed significant correlations between the HbO2 and systemic variables

    Born Effective Charges and Infrared Response of LiBC

    Full text link
    Calculations of the zone center optical mode frequencies (including LO-TO splitting), Born effective charges Zαα^*_{\alpha\alpha} for each atom, dielectric constants ϵ0\epsilon_{0} and ϵ\epsilon_{\infty}, and the dielectric response in the infrared, using density functional linear response theory, are reported. Calculated Raman modes are in excellent agreement with experimental values (170 cm1^{-1} and 1170 cm1^{-1}), while it will require better experimental data to clarify the infrared active mode frequencies. The Born effective charges Zαα^*_{\alpha \alpha} (i) have surprisingly different values for B and C, and (ii) show considerable anisotropy. Relationships between the effective charges and LO-TO splitting are discussed, and the predicted reflectivity in the range 0 -- 1400 cm1^{-1} is presented. These results hold possible implications for Li removal in LiBC, and C substition for B in MgB2_2.Comment: 6 pages, 3 figure

    Carbon nanomaterials for targeted cancer therapy drugs: a critical review.

    Get PDF
    Cancer represents one of the main causes of human death in developed countries. Most current therapies, unfortunately, carry a number of side effects, such as toxicity and damage to healthy cells, as well as the risk of resistance and recurrence. Therefore, cancer research is trying to develop therapeutic procedures with minimal negative consequences. The use of nanomaterial-based systems appears to be one of them. In recent years, great progress has been made in the field of possible use of nanomaterials with high potential in biomedical applications. Carbon nanomaterials, thanks to their unique physicochemical properties, are gaining more and more popularity in cancer therapy. They are valued especially for their ability to deliver drugs or small therapeutic molecules to these cells. Through surface functionalization, they can specifically target tumor tissues, increasing the therapeutic potential and significantly reducing the adverse effects of therapy. Their potential future use could, therefore, as vehicles for drug delivery. This review presents the latest findings of research studies using carbon nanomaterials in the treatment of various types of cancer. To carry out this study, different databases such as Web of Science, PubMed, MEDLINE and Google Scholar were employed. The findings of research studies chosen from more than 2000 viewed scientific publications from the last 15 years were compared

    Pain Reactivity and Plasma β-Endorphin in Children and Adolescents with Autistic Disorder

    Get PDF
    International audienceBackground: Reports of reduced pain sensitivity in autism have prompted opioid theories of autism and have practical care ramifications. Our objective was to examine behavioral and physiological pain responses, plasma β-endorphin levels and their relationship in a large group of individuals with autism.Methodology/Principal Findings: The study was conducted on 73 children and adolescents with autism and 115 normal individuals matched for age, sex and pubertal stage. Behavioral pain reactivity of individuals with autism was assessed in three observational situations (parents at home, two caregivers at day-care, a nurse and child psychiatrist during blood drawing), and compared to controls during venepuncture. Plasma β-endorphin concentrations were measured by radioimmunoassay. A high proportion of individuals with autism displayed absent or reduced behavioral pain reactivity at home (68.6%), at day-care (34.2%) and during venepuncture (55.6%). Despite their high rate of absent behavioral pain reactivity during venepuncture (41.3 vs. 8.7% of controls, P<0.0001), individuals with autism displayed a significantly increased heart rate in response to venepuncture (P<0.05). Moreover, this response (Δ heart rate) was significantly greater than for controls (mean±SEM; 6.4±2.5 vs. 1.3±0.8 beats/min, P<0.05). Plasma β-endorphin levels were higher in the autistic group (P<0.001) and were positively associated with autism severity (P<0.001) and heart rate before or after venepuncture (P<0.05), but not with behavioral pain reactivity.Conclusions/Significance: The greater heart rate response to venepuncture and the elevated plasma β-endorphin found in individuals with autism reflect enhanced physiological and biological stress responses that are dissociated from observable emotional and behavioral reactions. The results suggest strongly that prior reports of reduced pain sensitivity in autism are related to a different mode of pain expression rather than to an insensitivity or endogenous analgesia, and do not support opioid theories of autism. Clinical care practice and hypotheses regarding underlying mechanisms need to assume that children with autism are sensitive to pain

    Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1

    Get PDF
    Paroxysmal exercise-induced dyskinesia (PED) can occur in isolation or in association with epilepsy, but the genetic causes and pathophysiological mechanisms are still poorly understood. We performed a clinical evaluation and genetic analysis in a five-generation family with co-occurrence of PED and epilepsy (n = 39), suggesting that this combination represents a clinical entity. Based on a whole genome linkage analysis we screened SLC2A1, encoding the glucose transporter of the blood-brain-barrier, GLUT1 and identified heterozygous missense and frameshift mutations segregating in this and three other nuclear families with a similar phenotype. PED was characterized by choreoathetosis, dystonia or both, affecting mainly the legs. Predominant epileptic seizure types were primary generalized. A median CSF/blood glucose ratio of 0.52 (normal >0.60) in the patients and a reduced glucose uptake by mutated transporters compared with the wild-type as determined in Xenopus oocytes confirmed a pathogenic role of these mutations. Functional imaging studies implicated alterations in glucose metabolism in the corticostriate pathways in the pathophysiology of PED and in the frontal lobe cortex in the pathophysiology of epileptic seizures. Three patients were successfully treated with a ketogenic diet. In conclusion, co-occurring PED and epilepsy can be due to autosomal dominant heterozygous SLC2A1 mutations, expanding the phenotypic spectrum associated with GLUT1 deficiency and providing a potential new treatment option for this clinical syndrome

    Brevianes Revisited

    Get PDF
    Breviones are a new family of secondary metabolites that were originally isolated from the New Zealand endemic fungus Penicillium brevicompactum var. Dierckx. These compounds are generally characterized by a new carbon skeleton, known as breviane, which that has three possible structural variations, such as breviane, abeo-breviane, and abeo-norbreviane. Brevianes present a basic diterpenic tricyclic core that is mevalonic in origin and is similar to that of perhydrophenanthrene. The core bears four methyl groups at positions C4, C8, C10, and C13 and has defined stereochemistry at positions C5, C8, C9, C10, and C14. The C1'-C7' side chain has been proposed to have a polyketide biosynthetic origin and is joined to the diterpenic moiety through carbons C2'-C15'. The cyclization and lactonization of this part of the molecule leads to the characteristic breviane spiranic ring fused to the α-pyrone

    Peptide and Peptide-Like Modulators of 20S Proteasome Enzymatic Activity in Cancer Cells

    Get PDF
    The involvement of the ubiquitin–proteasome pathway in the degradation of critical intracellular regulatory proteins suggested a few years ago the potential use of proteasome inhibitors as novel therapeutic agents being applicable in many different disease indications, and in particular for cancer therapy. This article reviews recent salient medicinal chemistry achievements in the design, synthesis, and biological characterization of both synthetic and natural peptide-like proteasome inhibitors, updating recent reviews on this class of agents. As shown herein, different compound classes are capable of modulating the subunit-specific proteolytic activities of the 20S proteasome in ways not previously possible, and one of them, bortezomib, has provided proof-of-concept for this therapeutic approach in cancer clinical settings
    corecore